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I. INTRODUCTION 

Recently a new set of variables' has been proposed in 

order to study the properties of Quantum Chromodynamics (QCD) 

These variables have proven to be useful in the study of the 

strong coupling limit of the theory. In particular, a 

description of string-like quantized electric flux tubes is 

naturally obtained in this formalism. Furthermore, when the 

theory is placed on a lattice, a precise map can be established2 

between the new variables and the conventional lattice variables. 3 

The new variables are local and correspond to "corner" variables 

as opposed to the bilocal "link" variables of ref. 3 . In 

terms of the local corner variables it is easy to establish 

that the lattice quantum theory is very closely related to 

continuum &CD', a result which was difficult to obtain in 

terms of the link formulation. 

In ref. 1 a consistent set of commutation rules 

satisfied by the new variables was proposed. They were guessed 

at by demanding consistency with the canonical commutation 

rules of the independent dynamical degrees of freedom defined 

in the axial gauge. 4,5 In this paper we present a method for 

deriving the desired commutation rules, allowing generalizations 

to similar systems of variables which may be defined more 

generally in curvilinear coordinates. The method is applied 

to lightcone variables of similar nature. 

The present approach clarifies further the properties 

of these variables. In particular, it becomes evident that 
- 
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they are gauge invariant and that their commutation rules are 

a gauge invariant property of &CD. These commutation rules 

are related to chiral-like local transformations realized on 

these variables and they should follow in any quantization 

approach to QCD. 

We begin by parametrizing the 4 hermitian and traceless 

matrices (gauge potentials) A = Aa h" in terms of 4 unitary 
P v2 

matrices Bu which have the same number of independent functions. 

A. 
LJ 

= t BntauBw (no sum on u) . (1.1) 

We demand that the B 
LJ 

are W(N) group elements for each ,, 

B +B =l=BB+ 
P LJ !J P 

(1.2a) 

det B = 1 . 
LJ (1.2b) 

Before proceeding any further let us note some gauge 

symmetry properties of these variables. The theory is 

invariant under the local gauge transformation 

An + A; = U+(An + t aU)u (1.3) 

where U(x,) E SU(N). The Bu's as defined in eq. (1.1) have 

a much simpler behaviour under gauge transformations: 

Bn + B; =Bl,U . (1.4) 

Note that the gauge transformation acts on the right of the 

matrix %* In addition, each B,, may be transformed from the 

left by an independent gauge transformation Tn , such that 
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TFi is independent of x 
IJ 

for given n(e.g., TO is independent of 

x0). That is, for 

auiTu = 0, (no sum on u) (1.5) 

Au remains invariant under the transformations 

B + B' 1-I =TB 
u UlJ (1.6) 

From eq. (l.l), it is apparent that B t 
11 ' 

for given n, is 

closely related to the gauge transformation that leads to 

pt = 0. In other words, if we take in eq. (1.4) U = Bat 

(for example), then BA = BOBOt = 1 and B; = BIBOt, I = 1,2,3 

so that A;) = 0 and A; = i (BIBS t )a I(~I~o+ ). This form makes 

it evident that the left-handed symmetries Tn(in this example 
'+ 

TO(x)) are closely related to the remaining gauge invariance 

after the choice of some linear gauge such as A 
u 

= 0 for given 

u. 

We note that by multiplying eq. (1.1) from the right by 

% for each n, one obtains a differential equation from which 

% may be solved in terms of 
% in the form of a path ordered 

integral. The symmetry Tn is related to the fact that the 

boundary value of the integral may be chosen arbitrarily. 

In this paper we will take the view that the B 
LJ 

are the 

fundamental local variables and that the A 
lJ are obtained from 

them via eq. (1.1) if desired. The consistency of such a 

point of view will become self-evident as we proceed. 
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If we are working in a space with a metric g 
P"' then 

A' = gn"A,, and we will define Buthrough the relation 

A” +LJJBIJ . (1.7) 

Clearly, B,, is not a vector in this space, and generally 

Bn f g'l"B". In this paper we will mainly be concerned with 

the ordinary Minkowski metric g UV = n 
U" 

= diag(1, -1, -1, -1). 

We will also consider the non-diagonal lightcone metric towards 

the end of the paper. 

We intend to utilize the formalism with a more general 

metric by introducing a general change of coordinates 

2=2(u) , (1.8) 

and work in the u-basis while treating xn(u) as a field on the 

same footing with the other fields in the theory. In this 

approach s(u) play the role of collective coordinates which 

obey constraints given through the canonical formalism. One 

may be able to take advantage of such a formalism in order to 

work in a string-like basis, since QCD leads to such structures 

naturally in the strong coupling limit. Work along these lines 

will be reported elsewhere. 

In Section II, we discuss the form of the Lagrangian in 

terms of the new variables and identify the canonical variables 

and constraints. In Section III we quantize the theory, solve 

the constraints and prove that our variables are gauge invariant. 
- 
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In Section IV we apply our method to lightcone variables of 

similar nature and derive the lightcone Hamiltonian and 

commutation rules. 

II. LAGRANGIAN AND CONSTRAINTS 

We start with the familiar Lagrangian for QCD without 

fermioas: 

i = -+ 'Ir F pv,F~V, (2.1) 

F 
Y” 

= a,,Av - avAu - i g[AuJAV] . (2.2) 

In which we make the substitution (1.1) for A . 

As discussed in the previous section, Bnt(for a given n) 

is closely related to the gauge transformation that leads to 

An = 0. This fact can be utilized to obtain a simple expression 

for Fu,,, as follows. Write F,,, in terms of a gauge transformed 

F;lv ' where F;v is defined in the gauge A, = 0 (i.e., F,',y=-avA; 

for given 11 and v). Then by the above argument, 

F 
IJ” 

= B; Fbv B, . (2.3) 

Since 

A; = BV(An + i an )B,' , 

it follows from eq. (1.1) that 

A;I = ~v(B,,tanBu)Bvt + ; B”auBv+ 

=1B 
g VP alJBuv 

- 

(2.4) 

(2.5) 
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where we have introduced the notation 

B 
U" 

Z BuBvt = B+ 
"ii ' (2.6) 

Thus, repeating the argument for all n and v , we find 

F i B w=g v %JB "l.lallBLN)B" (2.7) 

This result can of course be arrived at directly by substituting 

(1.1) in (2.2). The antisymmetry in !.I and v , although not 

manifest, is still not lost. This can be seen by considering 

F LJ" 
= B +F" B 

lJ V"1-I ' (2.8) 

where F;;" is defined in the A !J = 0 gauge, and proceeding in 

a similar manner. Then 

F uv = - ; B,, +aJB pJavBv)J)Bu = -Fvjl ' (2.9) 

as expected. Note that the variable B,,,defined in eq. (2.6) 

can now be interpreted as a gauge transformation from the 

A!J = 0 gauge to ,the A, = 0 gauge. This follows from eqs. 

(2.3) and (2.8), whence 

F;;V = BuvFl;,,Bvn = B+ F' B "P 1J" "lJ . (2.10) 

Thus, using eqs: (2.7) or (2.9), the Lagrangian eq. (2.1) 

becomes 

L=L. 
t 

2g2 
Tr B,+(an(B C UvaVBvu))BnB u(au(BUvavBvU))B' 1 . 

(2.11) 

Since AU is bilinear in B ~, we lose no generality in taking 

- 
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En = B 
u' 

provided we adhere to the usual diagonal Minkowski 

metric n . 

A1 = -AI'; 

Then the minus sign on the right-hand side of 

I = 1,2,3 comes from a1 = -a, . This will not be 

possible in gauges such as the lightcone gauge, where one 

must work with an off-diagonal metric, and B t = B- f B+ follows 

from A+ =A #A+. More generally in any basis with non-trivial 

metric Bi-I has to be defined relative to R as nention~ed in 
lJ 

the introduction. 

Hence for the diagonal Minkowski metric, BVBU 
t 

= BnBn+ = 1 

(no sum), and the Lagrangian simplifies to 

1 = 1 Tr 
2g2 

au(B a B 
lJ” ” “P 

)a”(BpVaVBVu) 
I . 

The theory is now written entirely in terms of the variables 

B 
U"' which are gauge invariant by eqs. (1.4) and (2.6). In 

fact L contains time derivatives of BOI, 1=1,2,3 only, so 

that the B,, 's can be regarded as the fundamental dynamical 

variables. The remaining BUV, s are related to BoI via the 

constraint 

BIJ = 'IOBOJ ' 

which follows from the definitions of B uv(w. (2.6)). 

Of course there must be additional constraints which 

relate the B oI's or their conjugate momenta, as is dictated 

by the generalized Gauss' law which follows from gauge 

invariance. To find these constraints we must identify the 

(ij) canonical momentum conjugate to BOI , which we denote by 
- 

(2.13) 
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A;gi) . This is done by varying the action S = jd4xL with 

(ij) respect to aOBGI Integrating by parts, we find 

6s = =$ /d4x Tr "(aOB,,)a,2(B,,aoBoI)BIU] , 
g 

and therefore 

"IO g2 I = Aa 2(BIoaOB,I)BI, . (2.14) 

The equations of motion for BOI follow in a similar manner 

by setting the variation with respect to BOI equal to zero. 

Multiplying the equation of motion from the left by BGI and 

summing over 1=1,2,3, we obtain the relation 

ao *$ BOIAIO = O ’ i 1 
or equivalently 

3 
c 
I=1 BOIAIO = Go ' 

(2.15) 

(2.16) 

where G 0 is some time independent matrix which is determined 

by the boundary conditions, that is, by the properties of the 

vacuum. It is clear that eq. (2.16) is a constraint on the 

dynamical variables whose existence is directly related to 

the gauge invariance denoted by To in eqs. (1.5, 1.6). This 

constraint is identical to Gauss' law 

DIEI = 0 , (2.17) 

as can be seen by rewriting eq. (2.17) in terms of our variables. 

It is then clear that we should demand Go = 0 on the physical 
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gauge invariant states. Actually, in terms of our gauge 

invariant variables the constraint is easily imposed as an 

operator condition, as we will argue in the next section. 

III. GAUGE INVARIANT HAMILTONIAN AND QUANTIZATION 

From the Lagrangian of eq. (2.12), we obtain the symmetric, 

gauge invariant energy-momentum density, 

8 = 2 Tr 
PV g2 L 

acr(B a B ) aa(B”VaVBya) - g 1. 
au v Pa I 

(3.1) 
PV 

From this we obtain the Hamiltonian density, 

coo 
:H=-+Tr~ 2 

- L 
g I II a,(B,,a,B,,) 

I 

2' TrC a,(B,,a,B,,) L I 
2 =-- 

g I 

_- 
2' Tr c 

g f>J C 
aIcBIJaJBJI I2 . 1 (3.2) 

Note that this is indeed positive definite , since (BIJaJBJI)+= 

-BIJaJBJI' In order to express H in terms of the RIO, we must 

solve for ~I(BIoaoBoI) in terms of AIo: 

21 aI(BIoaoBoI) = g aI ("IoBoI) , (3.3) 

where we define 

1 f(xI) : 
a1 

for some function f ofx . Thus 

-5 
02 
xI dx I' f(xI') (3.4) 

- 
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H = -g2 R-z1 C 2 - I 
2 

I a1 aI(BIJaJBJI) ' 

(3.5) 

The second term in H is just the usual magnetic term, 

c F~~2 . Similarly, the first term is related to the usual 
I>J 
electric field term c EI' , although its significance is 

I 
more transparent in the light of the commutation rules, to 

which we now turn our attention. 

Since h$ii) is conjugate to BAij), one may be tempted 

to take the naive commutation rule, 

(x), ,(g) (x')] = -iSim&j161J63(x-x'). (3.6) 

Recall, however, that the relationship between A and B is 
!J 1J 

subject to the constraints, det B 
u 

= 1,Tr B:a,,Bn=O,B:Bn=l.. 

Translated into the language of BOI's and AIO's, these 

become a set of 2nd class constraints (ignoring for the moment 
BIOBOI=l): 

det BOI = 1 (3.7) 

Tr %OBOI = 0 . (3.8) 

Note that had we considered an U(N ) theory instead of SU(N), 

we would not have such constraints. These constraints are 

not consistent with the naive commutation rules (3.6), and 

they are not easily solved explicitly. We must therefore 

resort to the method of Dirac brackets 6. in order to find 

the correct commutation rules. In addition, we must deal with 

- 
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the constraints(2.18) and B loBol=l. We will return to these 

after we modify the commutation rules to first take care of 

(3.7) and (3.8). 

The Dirac brackets are constructed as follows. We start 

with the naive Poisson brackets, 

IA(ij) Io (~),Bi+~)(x') }= 6imt3j163(~-X’) . (3.9) 

The constraints are 

$;a+x) = 0 , (3.10) 

where 

$1 (l) = det B 01-l ' (3.1la) 

$12) = Tr A IOBOI (3.1Pb) 

Define the matrix MI constructed through the naive Poisson 

brackets (3.9) 

6 IJM;b(x,x’) = bt~;(x),&‘) I . (3.12a) 

Then the Dirac brackets are given by 

{,$ij)(x),Bhp)(x’)}* = {,~$~j)(x),B~:~)(~‘) } 

- Jd3yd3z{.@j) o (x).~~(~)~(M;l)~~(y,z)~~~(z),B~~~)(x')~ 

(3.12b) 

Using equations (3.9) - (3.12), we find that the only nonzero 

element of MI ab is 
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M;2(x,x') = -MTl(x',x) = -NA3(x-x') 

then 

(M;1)21(xr,x) = +d3(x'-x) . 

In order to evaluate eq. (3.12) we also need: 

{$;2)(x'),B;+m)(x )) = BOI (lm)&x-xl) 

we finally obtain 

')I = d3(x-x')BIO (ij) 

(3.13) 

(3.14) 

{*(ij) Io W,B@%+* = ( 6im6jl 
- N *IO 01 

1 (ij)B(lm))63(x-x, 

(3 

1 

.16) 

The commutators of the quantized theory are given by the 

correspondence {, } 
* Thus we find 

~;;~)(x),B~;~) 

(3.17) 

Note that the AI0 's also do not commute. However, 

A(ij),,(lm) is not very illuminating, since AIo and BOI 

occur in the Hamiltonian only in the combination A IOBOI' and 
it is this operator which is significant. Also note that we 

have not yet taken the constraint eq. (2.16) and BIOBOI = 1 

into account. 

Let us now consider the operator 

GI(x) z $ “Io(~)BoI(x) . (3.18) 
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Since A IOBOI is traceless and hermitian (See 2.14), GI can 

be written as: 

G,(x) = $;(x) , 

where the As/2's (a=l.. .N2-1) are the traceless NxN 

representations of the generators of W(N). They obey the 

identity 

B(Aa)ij(Aa)lm = 6. 6. Im ~1 -16.6 N iJ lm ' (3.20) 

Using eqgs. (3.17) - (3.20), it is easy to show that 

G;(x) >BOJ(xt )] = (B,, $) A3(x-x’ ) 61J. (3.21) 

Taking the hermitian conjugate of this equation, we find 

c G;(x),BJO(x') = 1 X a -- 2 BJ063(~-~') 61J . (3.22) 

It can now be checked that (3.21) and (3.22) are consistent 

with BIOBOI = 1. In fact from these one can deduce the 

correct commutation rules between A t 
IO and BJO = BOJ, which 

together with (3.17) are consistent with this constraint. 

The Hamiltonian can now be expressed entirely in terms 

of the GI's and B IJ 's as seen from eqs. (3.5) and (3.18). 

These variables are invariant not only under the original 

gauge transformation (1.4) but also under the TO(x) type 

gauge transformation of eq. (1.6), as is obvious from 

eq. (2.13) and (3.3). The quantum properties of the theory 

are now given by the commutation rules of these gauge 
- 

invariant variables, which can be derived from eqs. (3.211, 

(3.22) and (2.13): 
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G;(x) , BJK(x' ) 
I 

Aa 
= I- 61J r BJK + 

(3.23) 

The commutators of GF can be calculated directly using the 

Dirac formalism of eqs. (3.10-3.14), or by commuting both 

sides of eq. (3.23) with GL and applying the Jacobi identity. 

In either case, we obtain 

+x1 1 1 =if abc GC(x)6(~-t~)sI, (3.24) 

These commutation rules indicate that the GI(x) act like the 

generators of a local SU(N)l @ SU(N)2 8 SU(N)3 group, which 

is realized on the BIJ(x). They are reminiscent of the 

commutation rules that one encounters in the study of the 

non-linear sigma model. We remind the reader that in the 

non-linear W(N) @ SU(N) sigma model one deals with left- 

handed and right-handed transformations on a unitary matrix 

c If one denotes the generators of these left(L) and right 

(R)-handed transformations by Gz and GE one finds a constraint 

of the form 

GL+ :ZGRE+: =0 . (3.25) 

In our case there are 3 unitary matrices B12, B13, B23 and 3 

generators GF, 2, 3 G" Ga which act on the 1,2,3 "sides" of the B's 

as in eq. (3.23). Analogous to the constraint (3.25) of the 

sigma model, we have the constraint Go = 0 as given in eq. 

- 
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(2.16) which now takes the form+ (via 3.18): 
3 
c 
I=1 

: BOIGIBIO : = Go . 

by using the commutation rules (3.21) and It can be checked 

(3.22) that GE is 

TO($) of eq. (1.6 

just the generator of the gauge transformation 

). Therefore, it must commute with our gauge 

invariant variables Gt and BIJ. This indeed is true and can 

be verified by direct commutation. Since the theory is 

already expressed only in terms of singlet operators we can 

set Goa = 0 , satisfying Gauss' law identically. 

We have to ask now whether our commutation rules (3.23) 

and (3.24) are consistent with this contraint. The constraint 

can easily be solved as follows: We apply to eq. (3.26) a 

unitary transformation in the form :BJOGOBOJ: = 0 for any 

J, to obtain 

BJIGIBIJ: =0 (anyJ) 
I=1 

t In (3.26) :(...): implies an ordering of operators to insure 

tracelessness of Go and consistency with the commutation 

rules. The ordering is defined as' 

:B+G B: : GaBt ha TB=Bt$tBGa 

It is seen that :BtG B: is traceless, hermitian and consistent 

with the commutation rules (3.21) and (3.22). If one insists 

in placing G a in between B t and B, a c-number term proportional 

to the matrix 1 must be added to be consistent with these 

properties. 
- 
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We also remember that the BIJ satisfy by construction (see 

eq. (2.6) or eq. (2.13)) 

BIJBJK = BIK (any J) (3.28) 

This implies that one can choose just two B's and two G's as 

being independent and solve for the 3rd B and G through eqs. 

(3.27) and (3.28). For example if we take J=3, then 

B12 = B13B32 (3.29) 

G3 =- :B31G1B13: + :B32G2B23 
1 

. (3.30) 

Eq. (3.30) is a generalization of eq. (3.25) of the sigma 

model. We can now check the commutation properties of B12 

and G3 by treating them as dependent variables as in (3.29) 

and (3.30). The remarkable property is that they continue 

to satisfy the basic commutation rules (3.23) and (3.24). 

Since the operator properties of our variables are insensitive 

to the choice of dependent and independent variables, we will 

continue to preserve the symmetry between the 3 axes 1=1,2,3 

by keeping the notation as before, bearing in mind that the 

constraint is automatically satisfied. 

We have argued that our variables GF and BIJ are gauge 

invariant with respect to the gauge tra,nsformations U(x),) and 

To(z) of eqs. (1.4) and(l.6). There remains the gauge 

transformations TI 1=1,2,3. It is easy to verify by direct 

(equal time) commutation that the generators QF of these 
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transformations are the complete integrals of G; in the x1 

variable for each I. That is 
cc 

Ql = ~mG1(~1x2~3)d~1; Q2 = G3(x1x2X3)dx3 . 

(3.31) 

The physical states must be annihilated by these QF, since 

they must be gauge invariant. We refer to refs. 1 and 5 for a 

discussion of this point. Briefly, the QF are proportional 

to the electric field at m (see eq. (3.32) below), and for 

that reason the gauge non-invariant unphysical states, only 

on which Qt is non-zero, acquire an m energy and disappear 

from the spectrum automatically. In the strong coupling 

approach this condition is easy to implement and restricts 

the spectrum only to closed strings or strings with quarks 

at the ends. 

Finally to make contact with ref. 1 we express the 

Hamiltonian in terms of the variables 

II,& = - 

The III for given I can 

in the AI = 0 gauge. 1 

m 

dx"G(x") . (3.32) 
2 

be interpreted as the electric field 

Thus, the Hamiltonian written in terms 

of gauge invariant variables is 

H = Trig' 
c 

(I$)~ = h 1 a,(B,JaJBJ,) ' . (3.33) 
I g I'J 

This is the theory used in refs. 1,2 as described in the 

introduction. We have given here a method for deriving the 

quantization rules of this theory, and simultaneously we 
_ 
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have shown that the variables are gauge invariant. 

IV. LIGHT CONE QUANTIZATION 

Lagrangian, Equations of Motion, and Constraints 

As an example of how this formalism works for a basis 

which requires an off-diagonal metric, we explore the light- 

cone basis. We take xi = -& (x0-x3) to be the 

and x- = 1 
5G 

"time variable, 

a- 
(x0-x3), xi(i=1,2) as "space" variables. On the 

light cone, eq. (1.1) is replaced by 

*, = i B;a+B, , 

A+ zz + $a+$ = AT 

*i =;B;aiBi= - Ai . (4.1) 

Although the Au-variables are simply related to those used 

previsouly (e.g., A+ = 2 (AO*A3))> this is not so for the 

Bu's. The relationship between B, on the one hand and B. 

and B 3 on the other is complicated and nonlinear. However, 

the substitution of eq. (4.1) is the most natural general- 

ization of eq. (1.1). 

The derivation of the Lagrangian goes through exactly 

as before, with the same interpretation for the B 
UV 's (e.g., 

B +- is a gauge transformation from the A+ = 0 gauge to the 

A = 0 gauge). We must be careful, however, to use eq. (2.11) 

rather than (2.12), since because of the off-diagonal metric 

Bf =B andB-=B+. Thus B+B ++ 
= B,- rather than one. 

Then using eq. (2.11) we have 
- 
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a B --+ + f- )B-+a+(B+-a-B-+) 

+B -+a+(B +-a-B-+)B+_a_(B_+a+B+_) 

-4 c 
i 

ai(Bi_a_B_i)ai(Bi+a+B+i) 

+ 2al(B,,a2B21)a,(B,2a,B21) I . 
Using the identity 

B~+a+(B+~a~B~+)B+~ = -a-(B-+a+B+-) > (4.2) 

this becomes: 

L = 4 /d3x Tr 
g 

-2 c 
i 

ai(B. a B .)ai(Bi+a+B+i) l- - -1 

+ (~,(B12a2B2,H2 
I 

. (4.3) 

Once again, L is expressed entirely in terms of B 's. x+ 
lJV 

(i.e., "time") derivatives occur only for B+- and B+i, so we 

take these as dynamical variables. Proceeding in an analogous 

fashion to that of the previous section, we find that the 

conjugate momentum to Bi& denoted by AJ1 . is 
-+ 

A -+ = 4 a-2(B-+a+B+-)B-+ , (4.4) 
g 

Similarly, the conjugate momentum of B:', denoted by Ai:, is 

Ai+ = -$Q2(B. a B .)Bi+ . I- - -1 
g 

(4.5) 

- 
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Note that eq. (4.5), since it doesn't contain time derivatives, 

takes the form of a constraint, and must be dealt with by the 

Dirac bracket method. 

The Gauss' law constraint is found from the equations 

of motion for B+- and B+i as before. We obtain 

a+(B AA-, + c 
i 

B+ihi+) = 0 . (4.8) 

Thus 

B,-fi.& + c B,iAi+ = G, > (4.7) 
i 

where G, is time-independent. We will find, once again, 

that GT is the generator of T+-type (i.e., x+-independent) 

transformations on the "+" side of B+-, B+i, etc., and that 

only B12 and G- appear in the Hamiltonian. It will then be 

possible to set G, = 0 for all "time". 

Hamiltonian and Quantization 

We proceed to find 0 
IJV 

as in Section II, however we 

must now be careful to use the Lagrangian of eq. (2.11). 

Then 

e !JV = 4 wapa&pp~ 
g 

)Baaaa(BClvavBya)Bua) 

+ -ij Tr( ap(BU,aaBap)B 
g pvavcB" "a"B'&,,,) - guvL . 

(4.8) 

- 
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The Hamiltonian density is defined as usual as e++, or 

(A-+B+-)]2 + + (al(B12a2B21))2] . 

(4.9) 

Thus all terms involving hi+ and Bti have canceled. It is 

in fact a well-known result that only F+- and F12 occur in 

the Hamiltonian in any lightcone formulation. The simplicity 

of the Hamiltonian is one of our main motivations for 

exploring the light cone gauge. We will see, however, that 

this simplicity is achieved at the expense of complicated 

commutation rules. 

The complications arise in the two extra constraints 

which must agree with the cormautation rules, 

2 Gi = 2 ai (Bi-a-Bmi) , 

where we have defined 

Gi = =+ Ai+ B+i . (4.10b) 

We already know, by the method of the previous section, how 

to deal with the constraints 

det B+i = 0 

Tr Ai+ B+i=O . (4.11) 

Thus in applying the Dirac bracket method the constraints 

(4.11) are easily taken care of: Before dealing with (4.10) 

we can use (with k,n = 1,2,-) 
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{AL:j)(x), B;;m)(x')} = (6im&j1 - + Bi;j)B!p))6kn63(x-x') 

(4.12) 

as the "naive" Poisson brackets. At this point all of the 

statements of Section III after eq. (3.16) hold. The Gt's 

act as generators of SU(N)i transformations on the i-side of 

Bci just as in eqs. (3.21-22), and similarly 

Ga 
a 

: -i Tr-$ A-+B+- (4.13) 

generates such transformations on the "-" side of Bbi.and B -+.The 

quantity G, defined in eq. (3.7) has zero Poisson bracket 

with all the other G's, Bei and B12 (and hence with the 

Hamiltonian). Thus once again we need not incorporate 

eq. (4.7) and the unitarity + conditions B B = 1 in the Dirac 

bracket formalism, but we must deal with the new constraints 

(4.4) or equivalently (4.10) that arise on the lightcone. 

As can be seen from eq. (4.9), only II- z +G and _ 

B12 occur in the Hamiltonian, 

H = 8+- = Tr g2n2 ( _ - 2 (ap12a2B2,H2 . (4.14) 
g 

Therefore, to illustrate the method, we calculate the Dirac 

brackets (and hence commutators) for these variables 

in:, 
* 

B12} and IB12 (+x), B;;m)(x')}*. Unfortunately, these 

commutators are found not to be very useful due to their 

complexity, and are much more difficult to interpret than 

those of Section III. 

- 
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The constraints eqs. (4.10) can be written in the 

form 

Tr( $ Bi-a-Bbi) = 0 . (4.15) 
g 

Although II- has simple Poisson brackets with the left-hand 

side of this equation, the matrix MFQ(x.x'), 
1 
eq. (3.13) that 

1 
results from this constraint is impossible to invert explicitly 

A more tractable form of eq. (4.15) which yields an easily 

invertible form for MFg(x,x') is (no sum on i). 

B-iniBi- + 4 a (B .a.B. ) = 0 . -1 1 l- (4.16) 
g - 

where Iii is defined as in Section III, and we have used an 

identity similar to eq. (4.2). Then defining new 

a 
tJia = Tr % BmiEiBi- 

( + $apiaiBi-) 1 f (4.17) 

and noting that 

{Tr $ BmiIIiBi-, 
b 

Tr & BmjIIjBj-} = 0 (4.18) 

we find 

{4ia(x), $jb(xe)J = - -+ 6aba-63(x-x~)sij 
g 

E Mab(x-x')Eij . (4.19) 

Because of eq. (4.18), only the cross terms have contributed 

to the resulting eq. (4.19). Thus from eq. (4.19), 
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2 
(M-l)ba(xlx) = =g- 6abE(X1-X_)6(Xi-X1)6(X~-X2) . 

(4.20) 

The E-symbol is used as the inverse of 3 to insure the _ 

correct symmetry properties for the Dirac brackets. We 

also need the following to calculate the Dirac brackets: 

lnea, 1 $ib(x’)l = - 
2fz2 

6abais3(x-xt ) 

-‘f 
g2 

abc Trig B a.B. 63(x-x?) -i 1 I- 

xB x" Bm1B12(x') > l- 2 

C$I,~(X),B,,(X')} = -ie(Xi-X2)6(Xi-Xl)6(xL-x_) 

(4.21) 

(4.22) 

(4.23) 

Iflea, B 12(x’)). = 0 > (4.24) 

IB(ij) 

12 , B$:m)(xl)j = 0 . (4.25) 

Then we find 

{nea(x), B12(x1)I* = 

- ~e(Xi-Xl)E(X--X~) 6(X2-Xi)fabC Tr -$ Bbl(x) alB1-(x) 

XB l-.( 
Ab xlx;x;) T B -1(X1X~XI)B12(XiXiXI) 

+ SB(X~-X2)E(X--X1)6(X1-x;)fabc Tr $ Bd2(x) a2B2-(X) 

(cont.) 
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x B12(XiX~XI)BZ-(XiX2XI) 7 B-Z(XiX2X~) > (4.26) 

and 

{B~~~)(x),B$~") 
2 

(x1)1* = 5 ~(x_-x~)6(x2-~~)~dY1B(X1-Y1)B(X;-Y1) 

+ Cf312(X)B2- 1 2 _ (Y x x )B~2(~1x2x~)B21(X~)](im)[B2~(ylx2x~) 

x B4(Y1Xp-)l (U) 1 (4.27) 

Unfortunately it is not at all clear from these equations 

what the commutators of the quantum theory are, since the 

strings of B 
UV 

operators on the right-hand sides present 

numerous ordering problems. The only operator which retains 

simple commutation rules like those of Section III is G+a, since 

it commutes with the constraints, eq. (4.17). Hence whatever 

the quantum versions of eqs. (4.26) and (4.27) are, they are 

still consistent with the constraint G, = 0, and insensitive 

to the choice of dependent variable (Bl-, B2-, or B12). 

We further note that generalization to more complicated 

metrics (e.g., that of the u-basis of eq. (1.8)) will not 

necessarily present the same kind of difficulties as those of 

the lightcone. The complexity of eqs. (4.26) and (4.27) are a 
+ result of our choice of time, x , which induces two extra 

- 
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constraints. This can always be avoided if we quantize only 

on spacelike surfaces. 

We have shown that the quantum algebra of the new 

variables for &CD, introduced in ref. 1, can be reproduced from 

a more fundamental Lagrangian approach. Furthermore, the 

dynamical variables are completely gauge invariant. It 

is found that the generalized Gauss' law, which is readily 

obtained from the equations of motion, can be imposed as an 

operator constraint since it commutes with all variables 

occuring in the Hamiltonian. The commutation rules are 

insensitive to the choice of dependent variables. 

Quantization on the light cone leads to certain difficulties 

which arise because of the choice of time, although it is 

possible that a more judicious choice of variables may 

circumvent these problems. 
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